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BSTRACT 
The nonlinear vibration of sandwich viscoelastic plates under wide
investigated. The main focus is on the influence of the one
close natural frequencies of the asymmetric modes of a near
modal response and the on
modeling of the mid
led to both geometrical and material nonlinearities.  For the nonlinear constitutive equation of the mid 
layer, a single integral viscoelastic model is used. The displacement field in the thickness direction is 
also assumed to be linear for the in
Moreover, the Kirchhoff theory with the von
solution is initiated by applying the perturbation method along with the Galerkin’s method to obtain 
integro-differential ordinary equations in time. These equations are then solved using the Gaussian and 
non-Gaussian closure methods and the results are used to investigate the occurrence of the bifurcation 
with the aid of the Pseudo
modal response and the minimum excitation intensity required for the nonlinear interaction between 
asymmetric modes. 
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modeling of the mid-layer is based on the moderate transverse shear strains and rotations, which have 

metrical and material nonlinearities.  For the nonlinear constitutive equation of the mid 
layer, a single integral viscoelastic model is used. The displacement field in the thickness direction is 
also assumed to be linear for the in-
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solution is initiated by applying the perturbation method along with the Galerkin’s method to obtain 

ential ordinary equations in time. These equations are then solved using the Gaussian and 
Gaussian closure methods and the results are used to investigate the occurrence of the bifurcation 

with the aid of the Pseudo-arclength continuation method. Numer
modal response and the minimum excitation intensity required for the nonlinear interaction between 

 

   .

 
  

mme.modares.ac.ir
  

modes of sandwich plates under wide

  

s_mahmoudkhani@sbu.ac.ir  

 .

 .

 .
 .

 .

 .

Nonlinear modal interaction between asymmetric modes of sandwich plates 

Engineering, Sharif University of Technology, Tehran, Iran 

The nonlinear vibration of sandwich viscoelastic plates under wide
investigated. The main focus is on the influence of the one
close natural frequencies of the asymmetric modes of a near

off intermittency phenomenon are especially considered. The mathematical 
layer is based on the moderate transverse shear strains and rotations, which have 

metrical and material nonlinearities.  For the nonlinear constitutive equation of the mid 
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The nonlinear vibration of sandwich viscoelastic plates under wide
investigated. The main focus is on the influence of the one-to-one internal resonance, arisen from the 
close natural frequencies of the asymmetric modes of a near-square plate on the response. The multi

off intermittency phenomenon are especially considered. The mathematical 
layer is based on the moderate transverse shear strains and rotations, which have 

metrical and material nonlinearities.  For the nonlinear constitutive equation of the mid 
layer, a single integral viscoelastic model is used. The displacement field in the thickness direction is 

plane components and quadratic for the out
Karman nonlinearities is used for the outer layers. The 

solution is initiated by applying the perturbation method along with the Galerkin’s method to obtain 
ential ordinary equations in time. These equations are then solved using the Gaussian and 

Gaussian closure methods and the results are used to investigate the occurrence of the bifurcation 
arclength continuation method. Numerical results are presented for the multi

modal response and the minimum excitation intensity required for the nonlinear interaction between 
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)  

 
)  

Fig. 6  Time history of the mean square response of the mode (2,1), 
which is indirectly excited by the mode (1,2) (for excitations with 
higher  PSD) 
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Fig. 7 Variation of the bifurcation load PSD with the length to width 
ratio;  Solid line: Non-Gaussian (NG) MC, Dashed line: Gaussian (G) 
MC. 
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Fig. 8 Variation of the natural frequency of the mode (1,2) (solid line) 
and also variation of frequency difference between modes (1,2) and 
(2,1) (dashed line) with the length to width ratio of the plate 
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Fig. 10 Variations of the normalized MS response of the modes (1,2) 
(solid line) and (2,1) (dashed line) with the length to width ratio 

( = 0.6).  
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